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SUMMARY

     A research program is being undertaken to develop rate dependent deformation and
failure models for the analysis of polymer matrix composite materials.  In previous work
in this program, strain-rate dependent inelastic constitutive equations used to analyze
polymers have been implemented into a mechanics of materials based composite
micromechanics method.  In the current work, modifications to the micromechanics
model have been implemented to improve the calculation of the effective inelastic strain.
Additionally, modifications to the polymer constitutive model are discussed in which
pressure dependence is incorporated into the equations in order to improve the calculation
of constituent and composite shear stresses.  The Hashin failure criterion is implemented
into the analysis method to allow for the calculation of ply level failure stresses.  The
deformation response and failure stresses for two representative uniaxial polymer matrix
composites, IM7/977-2 and AS4-PEEK, are predicted for varying strain rates and fiber
orientations.  The predicted results compare favorably to experimentally obtained values.

LIST OF SYMBOLS

Do inelastic material constant representing maximum inelastic strain rate
E elastic modulus of material
G shear modulus of material
J2 second invariant of deviatoric stress tensor
Kij components of K2 effective stress
kf fiber volume ratio of composite
n inelastic material constant representing rate dependence of material
q inelastic material constant representing hardening rate of material
Sij deviatoric stress components
S ply shear strength
XT ply longitudinal tensile strength
XC ply longitudinal compressive strength
YT ply transverse tensile strength
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YC ply transverse compressive strength
Zo material constant representing initial isotropic hardness of material
α scaling factor for shear components of K2 effective stress
β material constant used in scaling shear components of K2 effective stress
εij strain tensor components
εI

ij inelastic strain components
εe

I effective inelastic strain
γij engineering shear strain components
Ωij back stress component
Ωm inelastic material constant representing value of back stress at saturation
σij stress tensor components
σm mean or hydrostatic stress
• quantities with dots above them represent rates

Subscripts

Af bottom left subcell of composite unit cell (fiber material)
Am bottom right subcell of composite unit cell (matrix material)
B1 top left subcell of composite unit cell (matrix material)
B2 top right subcell of composite unit cell (matrix material)
R1 region of composite unit cell consisting of subcells Af and Am
R2 region of composite unit cell consisting of subcells B1 and B2
f fiber related material property
m matrix related material property
12 in-plane shear stress or strain components
11,22,33 normal stress or strain components

INTRODUCTION

     NASA Glenn Research Center has an ongoing research program to investigate the
feasibility of developing hardwall fan containment systems composed of polymer matrix
composite materials for aircraft engines.  In such an application, the composite would be
loaded at strain rates up to several hundred per second.  To design a composite
containment system, the ability to correctly predict the deformation and failure behavior
of the composite under the high rate loading condition is required.

     In previous reports [1,2], a strain-rate dependent inelastic constitutive model was
described which was utilized to simulate the deformation response of two polymers,
Fiberite 977-2 and PEEK.  The implementation of the constitutive equations into a
mechanics of materials based composite micromechanics model was also discussed.
Micromechanics models are utilized to predict the effective deformation response of a
composite material based on the properties and response of the individual constituents.
The deformation response of two uniaxial polymer composites reinforced with carbon
fibers, IM7/977-2 and AS4/PEEK, was predicted using the developed analysis technique
for various fiber orientations and strain rates.  The predicted values compared favorably
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to experimentally obtained results.  Both the nonlinearity and rate dependence of the
stress-strain curves were captured in the analysis.  Only relatively low strain rates were
examined due to the availability of experimental data.  However, the techniques can be
extended to high strain rate conditions.  Furthermore, only unidirectional composites with
arbitrary fiber orientation angles are currently being analyzed.  A laminate theory has not
been implemented into the model.

     Using the methodology as described in [1] and [2], the stresses and deformations in
the composite were reasonably well predicted in general.  However, for fiber orientation
angles in which shear stresses in the matrix are dominant, the match between
experimental and predicted values was not as good.  These results suggested that the
shear stresses in the matrix were not being predicted correctly.  The discrepancies were
determined to primarily be a function of two parameters.  First, the mathematical
formulation used to compute the effective inelastic strain for the composite was found to
be incorrect.  Second, the polymer constitutive model discussed in [1] appeared to predict
the shear stresses incorrectly, and required modification.  In particular, the shear terms in
the polymer flow law were determined to be a function of the hydrostatic pressure, which
was not accounted for in the original equations.  Both of these modifications to the
original model will be discussed in this report.

     In order to develop structural level failure and penetration models, ply level failure
needs to be accurately predicted.  In this work, the Hashin [3] failure model will be
implemented in order to predict ply level failure for a variety of fiber orientation angles.
An advantage of a ply failure model of this type is that even though the criterion is based
on macroscopic stresses, the model predicts failure based on constituent level failure
mechanisms using a phenomenological approach.

     This report begins with a background section.  First, a review of the literature
discusses the effects of the hydrostatic pressure on the inelastic response of polymers.
Next, previous investigations into developing ply level failure models for polymer matrix
composites will be presented.

     After the background section, the modifications to the computation of the effective
inelastic strain in the micromechanics technique will be presented.  In the previous work
[2], a simple volume averaging of the inelastic strain in each material region was utilized
to compute the effective inelastic strain.  As will be discussed in this report, this approach
was modified in a manner such that the assumptions implied in the original
micromechanics model are accounted for more accurately.

     Next, the modifications that were implemented into the polymer constitutive equations
will be discussed.  The original model will be given, and the modifications to the shear
terms in the inelastic flow law that were implemented will be presented. The deformation
response of two representative uniaxial polymer matrix composites will be predicted and
compared to experimental values for a variety of fiber orientation angles and strain rates.
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     Finally, the ply level failure model that was implemented will be discussed.  The
details of the model will be presented.  The ply level failure stresses for the chosen
representative composites will be predicted for a variety of fiber orientations and strain
rates and compared to experimental values.

BACKGROUND

Pressure Dependence of Polymer Inelastic Deformation

     The hydrostatic stress state has been found to have a significant effect on the yield
behavior of a polymer [4-7].  Increasing the hydrostatic pressure has been found to
increase the yield stress [4-6].  The effect of hydrostatic pressure also results in the tensile
and compressive yield stresses of a polymer being unequal.  This effect can be
incorporated in the Maximum Shear Stress (Tresca) and Maximum Distortion Energy
(von Mises) yield theories to develop yield criteria that can be applied to polymers [7].
In the Maximum Shear Stress criteria, the shear yield stress is a linear function of the
hydrostatic stress.  In the Maximum Distortion Energy criteria, the octahedral shear stress
at yield is a linear function of the mean stress.  Ward [4-6] also incorporated these
concepts into modifying the Eyring based yield criteria, in which the hydrostatic pressure
is incorporated as an additional term in the equations relating the octahedral shear strain
at yield to the octahedral shear stress at yield.

     If the pressure dependence is to be incorporated into an inelastic state variable
constitutive model, appropriate effective stress definitions need to be defined.  Bordonaro
[8] attempted several such modifications.  One such modification involved utilizing total
stresses instead of stress deviators in the effective stress definition.  Another such
modification consisted of adding in a multiple of the mean stress to the product of stress
deviators.  Neither of these modifications yielded acceptable results when compared to
experimental data for materials such as Nylon and PEEK, indicating that an alternative
effective stress definition is required.

Ply Level Composite Failure Models

     As indicated in reviews such as those conducted by Nahas [9], many failure criteria
exist to predict the ply level ultimate strength in polymer matrix composites.  No one
criterion has been found to be superior for all materials and loading conditions.  Several
“classic” criteria are in use, as detailed in texts such as those by Gibson [10] and
Herakovich [11], and in review papers such as those by Reddy and Pandey [12].  Simple
models such as the Maximum Stress and Maximum Strain criteria simply compare the
stresses (or strains) in each coordinate direction to the ultimate values.  The drawback to
these models is that stress interaction is not accounted for to any significant extent.  In the
Tsai-Hill criteria, a quadratic combination of stresses and strengths in each coordinate
direction is compared to a failure value.  In this model, stress interaction is accounted for,
but differences between tensile and compressive strengths are not considered.  The Tsai-
Wu criterion utilizes a tensor based failure criterion, which allows for differences
between tensile and compressive failure strengths.  In general, the more sophisticated
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failure criteria such as Tsai-Hill or Tsai-Wu provide improved failure predictions than
simple models such as Maximum Stress or Maximum Strain, but studies like that
conducted by Sun and Quinn [13] show that this is not always the case.

     In all of the models discussed above, composite failure is considered on purely a
macroscopic level, with no attention being paid to the specific mechanisms which cause
failure.  In reality, failure in a composite is a result of specific local mechanisms such as
tensile fiber failure, matrix cracking or delamination [14].  While accurate modeling of
these local failure mechanisms would require a detailed micromechanical analysis,
several researchers have developed phenomenological failure criteria that predict local
failure mechanisms based on macroscopic stresses.

     Hashin [3] developed a failure model that predicts fiber failure or matrix failure
(tensile or compressive) based on appropriate quadratic combinations of stresses and
failure strengths.  Chang and co-workers [15-17] developed similar quadratic failure
criteria, but also accounted for nonlinearities in the stress-strain curve by using integrals
of strain energy in the shear terms instead of shear stresses and shear strengths.  Yen [18]
extended the Chang criteria from a plane stress assumption to a fully three-dimensional
model.  He then utilized the modified criteria to predict composite damage and failure for
a transient dynamic impact application.  Banerjee [19] also successfully utilized the
Hashin and Chang failure criteria to predict damage and failure for a polymer matrix
composite subject to impact loads.  Rotem [20] developed a quadratic failure criteria
based on local failure mechanisms, but in the matrix failure equations the matrix failure
strength and matrix stress were used along with the macroscopic stress and strength
values.  Tabiei et al. [21] utilized the Hashin criterion to predict the failure of a polymer
matrix composite with nonlinearities in the stress-strain curve, but accounted for the
nonlinearities in the composite constitutive law instead of in the failure criteria.  Langlie
and Cheng [22] also developed failure criteria based on local failure mechanisms to be
used for composites subject to high strain rate impact, but utilized a maximum stress type
of approach instead of a quadratic stress interaction approach for each of the failure
modes.  In another approach to the problem, Pecknold and Rahman [23] utilized a
micromechanics model to predict the deformation response of the composite, and also
utilized failure criteria based on the local stress states in each of the constituents (fiber or
matrix).  The prior research discussed here indicates that a failure criterion based on
approximating local failure mechanisms may produce good predictions.  A mechanism
based failure criterion would also facilitate the development of a material degradation
model when applied to the analysis of structures composed of composite materials.

REVISED EFFECTIVE INELASTIC STRAIN CALCULATIONS

Overview

     In the composite micromechanics model [2], the composite unit cell is divided into
four subcells, one fiber subcell and three matrix subcells (Figure 1).   A square, periodic
fiber packing is assumed.  Perfect bonding between the fiber and matrix is also assumed.
Appropriate uniform stress and uniform strain assumptions are then utilized to compute
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the stress in each subcell based on the total strain levels and the inelastic strain in each
subcell.  Further details of the model can be found in [2].

     In the original formulation of the model, the effective inelastic strain for the composite
ply was computed by simply taking the volume weighted average of the inelastic strain in
each of the subcells, as follows:

)()1())(1)(()( 2
2

1
I
ijBf

I
ijB

I
ijAmff

I
ijAff

I
ij kkkk εεεεε −++−+= (1)

where the subcells are as identified in Figure 1 and “kf” is the fiber volume ratio.  The
effective inelastic strain is required for proper application of the Poisson strains, which
are utilized in the stand alone computer code within which the model is currently
implemented.

     By utilizing this method of computing the effective inelastic strain, however, the
deformation response predicted for shear dominated fiber orientation angles differed
significantly from that predicted by the Generalized Method of Cells (GMC) [24], a
commonly used micromechanics analysis method.  GMC, being a well developed
methodology, is assumed to give “accurate” micromechanics predictions and thus
provides a reasonable benchmark to compare the results predicted using the
micromechanics methods developed in this study.  However, the micromechanics method
considered here was two to three times more computationally efficient than the version of
GMC that was available at the time of this study.  Furthermore, the computer code for
implementing the micromechanics equations is very compact, which facilitated the
implementation of the failure criteria discussed later in this report, and will most likely
simplify the implementation of the micromechanics into a finite element code.

     As an example, Figure 2 shows results predicted for an IM7/977-2 laminate with a
[10°] fiber orientation.  As is seen in the figure, the results predicted using the two
micromechanics methods are significantly different, which was discussed in reference
[2].  At the time that reference [2] was published, a reason for the discrepancy had not
been determined.  As will be shown later in this report, improving the calculation of the
effective inelastic strain in the micromechanics method developed for this study helped to
reduce this discrepancy.

     To improve the calculation of the effective inelastic strains, the fundamental
assumptions and derivation techniques that were used in [2] to compute the stresses in
each subcell given the total strains are applied.  Appropriate uniform stress and uniform
strain assumptions were applied in order to relate the macroscopic stresses to the
macroscopic strains for each coordinate direction.  From these expressions, the effective
inelastic strains can be determined.  While Poisson effects are very important in general
in computing total strains, in the calculation of the effective inelastic strains Poisson
effects are neglected to simplify the mathematics.  The Poisson effects most likely have a
minimal contribution to the effective inelastic strain.  In the following derivation, Poisson
effects are not included in any calculations, since only the results for the inelastic strains
are utilized from this derivation.  In the full micromechanics equations presented in
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reference [2], Poisson effects are fully included in computing the stress levels in each
subcell based on the total strain and the subcell inelastic strains.  Neglecting Poisson effects
in certain calculations is actually very common in mechanics of materials approaches for
composite micromechanics, as is discussed in references such as [11] and [14].

     Only the derivations for the normal “11” and “22” direction and in-plane shear
effective inelastic strains will be shown in detail.  The expression for the “33” direction
inelastic strain is very similar to that of the “22” direction value and will be discussed
briefly.  The expressions for the out-of-plane shear follow in a similar manner to that of
the in-plane shear strain.  An important point to note is that while the derivations will
look very similar to what was presented in [2], the derivations that follow are only meant
to replace Equation (1) for the calculation of the effective inelastic strain in the
composite.  The remaining micromechanics calculations remain unchanged from what
was presented in reference [2].

Effective Inelastic Strain Derivation

     The unit cell utilized in the development of the micromechanics equations is shown in
Figure 1.  The bottom layer of subcells, with subcells “Af” and “Am”, is referred to as
Row 1 (R1).  The top layer of subcells, with subcells “B1” and “B2”, is referred to as
Row 2 (R2).  Subcell “Af” is composed of fiber material, the remaining three subcells are
composed of matrix material.  The subscript “f” will be used to denote fiber related
properties, and the subscript “m” will be used to denote matrix related properties.
Subscripts “Af”, “Am”, “B1” and “B2” will be used to denote stresses and strains of the
individual subcells.  Subscripts “R1” and “R2” will be used to denote stresses and strains
in the corresponding regions as defined above.  Stresses and strains with no region
identifying subscript will be assumed to represent the total effective stresses and strains
for the unit cell.  A superscript “I” will be used to denote inelastic strains.  The subscripts
“11”, “22” and “33” will be used to define normal stresses, strains, and their material
properties, with the coordinate directions as defined in Figure 1.  The “1” direction is
along the fiber axis, directions “2” and “3” are perpendicular to the fiber axis.  As is
shown in Figure 1, the “2” direction is in the plane of the laminate, and the “3” direction
is through the thickness of the laminate.  The subscripts “12”, “13” and “23” will be used
to define shear stresses, strains, and their material properties.

     The symbol “E” represents the elastic modulus and the symbol “G” represents the
shear modulus.  The symbol “σij ” represents stress tensor components, the symbol “εij ”
represents strain tensor components, and the symbol “γij ” represents engineering shear
strain components, all assigned in a Cartesian frame of reference.  The symbol “kf”
represents the fiber volume ratio of the composite. The fibers are assumed to be
transversely isotropic with properties E11f representing the longitudinal elastic modulus of
the fiber (along the 1 direction axis in Figure 1), E22f representing the transverse modulus
of the fiber, and G12f representing the in-plane shear modulus of the fiber.  The matrix is
assumed to be an isotropic material with Em representing the elastic modulus of the
matrix and Gm representing the shear modulus of the matrix.
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     The stress and strain in each subcell are assumed to be the effective stress and strain,
equal to the average stress or strain over the volume of the subcell.  These values are
assumed to be uniform over the volume of the subcell.  The effective stress and strain in
Row 1 and Row 2 are defined as the volume average of the stresses and strains in the
corresponding subcells.  The effective stress and strain in the unit cell are defined as the
volume average of the stresses and strains in Row 1 and Row 2.  To determine the
volume average, a weighted sum is computed where the value (stress or strain) in each
subcell or region is weighted by the ratio of the volume of the subcell (or region) over the
total volume of the region (or unit cell).

     Neglecting Poisson effects, the constitutive equations for the normal and in-plane
shear stresses are given by the following expressions:

)( 11111111
IE εεσ −= (2)

)( 22222222
IE εεσ −= (3)

)*2( 12121212
IG εγσ −= (4)

The inelastic strain values are only utilized when the matrix material is considered.  Since
the fiber is linearly elastic, no inelastic strains are present in the fiber.  For the isotropic
matrix, furthermore, E11 is set equal to E22.

Normal Effective Inelastic Strains

     In computing the normal direction (11 and 22) effective inelastic strains, the following
uniform stress and uniform strain assumptions are made:

11211111

211211111

1111111

εεε
εεε
εεε

==
==

==
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RBB

RAmAf

(5)

222222122

1222222

RBB

RAmAf

σσσ
σσσ

==

==
(6)

22222122 εεε == RR (7)

The effective stresses and strains in Row 1 (R1) and Row 2 (R2), as well as for the
composite unit cell, are computed using volume averaging, yielding the following
expressions:

AmfAffR kk 2222122 *)1(* εεε −+= (8)
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222122222 *)1(* BfBfR kk εεε −+= (9)

AmfAffR kk 1111111 *)1(* σσσ −+= (10)

211111211 *)1(* BfBfR kk σσσ −+= (11)

21111111 *)1(* RfRf kk σσσ −+= (12)

22212222 *)1(* RfRf kk σσσ −+= (13)

     By utilizing the constitutive equations for the fiber and matrix, along with the uniform
stress and uniform strain assumptions, the following expressions are obtained for the
effective inelastic normal strains:
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where:
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The effective inelastic strain in the “33” direction can also be computed by using
Equation (15) by switching the inelastic strains in subcells “Am” and “B1” in the
expression.

In-Plane Shear Effective Inelastic Strains

     In computing the contribution from the in-plane shear (12) direction to the effective
inelastic strain, the following uniform stress and uniform strain assumptions are made:

12212112 γγγ == RR (17)
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(18)
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By applying volume averaging, the effective in-plane shear stresses and strains in each
region and for the composite unit cell are defined as follows:

212112212

1212112

*)1(*

*)1(*

BfBfR
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(19)

21211212 *)1(* RfRf kk σσσ −+= (20)

     By utilizing the constitutive equations for the fiber and matrix, along with the uniform
stress and uniform strain assumptions, the following expression is obtained for the
effective inelastic in-plane shear strain:

( ) ( ) ( )( )
( ) mf
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where:
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The effective inelastic strain in the out-of-plane shear (13) direction can be computed by
using Equation (21) by switching the inelastic strains in subcells “Am” and “B1” in the
expression.  The effective inelastic strain in the out-of-plane shear (23) direction follows
automatically from the derivation presented in [2], and is presented without further
comment.  Note that since the fibers are assumed to be linearly elastic, this equation is
identical to Equation (1) for this particular strain component.

( )I
Bf

I
B

I
Amff

I kkk 2231232323 *)1()(**)1( εεεε −++−= (23)

Discussion

     The revised effective inelastic strain formulations were applied to the deformation
analysis of two polymer matrix composites: IM7/977-2 and AS4/PEEK (see References
[1,2] for a full description of these materials and their material properties).  The predicted
stress-strain response for fiber orientations in which normal stresses dominate ([0°],
[90°], [45°]) did not vary significantly from the results predicted using the original
formulation.  However, for fiber orientations in which shear stresses dominate ([10°],
[15°], [30°]), the results predicted by using the revised formulation were much softer than
were predicted by the original formulation.  This result is demonstrated in Figure 3,
which displays the stress-strain results for the IM7/977-2 laminate with a [10°] fiber
orientation using the revised inelastic strain formulation.  By comparing the results in
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Figure 2 and Figure 3, the results predicted in Figure 3 using the revised formulation almost
exactly match the results predicted using GMC shown in Figure 2.  These results indicate
that a major contribution to the original discrepancies between the two micromechanics
methods is most likely due to the method utilized to calculate the effective inelastic strain
in the mechanics of materials approach.  However, since the predicted deformation
response is significantly softer than the experimental values, the results further suggest that
the shear stresses in the polymer are not being computed accurately. The modifications to
the original constitutive equations required to improve the calculation of the shear stresses
in the polymer are presented in the next section of this report.

REVISED POLYMER CONSTITUTIVE MODEL

Original Constitutive Equations

     The Ramaswamy-Stouffer viscoplastic state variable model [25], which was originally
developed for metals, was utilized to simulate the rate dependent inelastic response of the
polymer matrix materials in previous analyses [1,2].  As discussed in [1], there are
sufficient similarities between the inelastic deformation response of metals and the
inelastic response of polymers to permit the use of constitutive equations that were
developed for metals to analyze polymers.  The effects of hydrostatic stress on the
inelastic strains were neglected in this original work.  In the Ramaswamy-Stouffer
equations, the inelastic strain rate, I

ijε� , is defined as a function of the overstress, or

difference between the deviatoric stress components, Sij , and back stress state variable
components, Ωij , in the form:

22
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where Do, Zo, and n are material constants, and K2 is defined as follows:

( )( )ijijijij SSK Ω−Ω−=
2

1
2 (25)

The elastic components of strain are added to the inelastic strain to obtain the total strain.
The following relation defines the back stress rate:

I
eijijmij qq εε ��� Ω−Ω=Ω

3

2
(26)

where q is a material constant, Ωm is a material constant, which represents the maximum
value of the back stress, and I

eε�  is the effective inelastic strain rate, defined as follows:

ijij
I
e εεε ���

3

2= (27)
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where repeated indices indicate summation using the standard indicial notation
definitions.  Equation (26) differs slightly from the expression as given in [25] in that the
original equations included a stress rate term in the evolution equation, which was not
required here.

     To obtain the material constants for this material model, the saturation stress values
(the stress level where the stress-strain curve flattens out) from several constant strain
rate tensile tests are utilized.  In addition, the average inelastic strain at saturation is used.
Equations (24)-(27) and linear regression techniques are then applied to obtain the
material constants.  More details on the constitutive equations and obtaining the material
constants can be found in [1].

Modification to Constitutive Equations

     As discussed previously in this report, the original constitutive equations, as described
above, do not appear to adequately model the shear response of the polymer.
Furthermore, researchers such as Pecknold and Rahman [23], Chang et al. [15-17], and
Tabiei et al. [21] have determined that the majority of the nonlinearity in the deformation
response of polymer matrix composites is in the shear response.  Therefore, proper
simulation of the polymer shear response appears to be of critical importance.  The
necessity of modifying the Ramaswamy-Stouffer constitutive equations in order to model
polymers is not unique to this work.  Rocca and Sherwood [26] utilized a modified
version of the evolution law (Equation (26)), wherein they included the original stress-
rate term, and they also added a term including the logarithm of the effective strain rate.

     For this work, a modification of the effective stress term in the flow law (Equation
(25)) was carried out to improve the modeling of the shear response of the polymer.
Equation (25) can be rewritten as follows:

( )[ ]2313123322112 2
2

1
KKKKKKK +++++= (28)

The normal terms (11,22,33) in this expression maintain their original definition as
suggested by Equation (25) as follows:

( )( )1111111111 Ω−Ω−= SSK (29)

( )( )2222222222 Ω−Ω−= SSK (30)

( )( )3333333333 Ω−Ω−= SSK (31)

However, the shear terms in the effective stress definition have been modified as follows:

( )( )1212121212 Ω−Ω−= SSK α (32)
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( )( )1313131313 Ω−Ω−= SSK α (33)

( )( )2323232323 Ω−Ω−= SSK α (34)

where:

β
σ

α 









=

2J
m (35)

( )3322113

1 σσσσ ++=m (36)

ijij SSJ
2

1
2 = (37)

     The primary modification to these equations is the multiplication of the shear terms in
the effective stress by the parameter α.  In this term, σm is the mean stress, J2 is the
second invariant of the deviatoric stress tensor, and β is a rate independent material
constant.  While this formulation is somewhat phenomenological in nature, relating the
shear contributions to the inelastic response to the mean stress is based on actual
observed physical mechanisms, as discussed earlier in this report.  When the parameter β
is set equal to zero (0), the value of α in Equation (35) is equal to one (1), and Equation
(28) is equivalent to Equation (25).  Therefore, the modification to the constitutive
equations is implemented through the use of the correlation coefficient α.

     Since only uniaxial tensile data was available for the polymers considered in this
study, the value of the parameter β was determined empirically by fitting composite data
with shear dominated fiber orientation angles, such as [10°] or [15°].  Analyses of [45°]
laminates, in which the normal and shear stresses are more equivalent on the material
axis level, were then conducted in order to verify that the determined constant value was
reasonable.  Ideally, the polymer model would be characterized by using a combination
of tension, torsion, and tension-torsion tests done on the bulk polymer.  Since composite
data was utilized to characterize the model, simplified, consistent techniques to
characterize the polymer using bulk polymer data have not yet been determined.  The
remaining material constants were determined using techniques described in [1].

Material Properties for Verification Analyses

     To verify the micromechanics equations, a series of analyses were carried out using
two material systems.  For consistency, the same two materials systems examined in [2]
were utilized.  Both material systems exhibit a nonlinear deformation response for off-
axis fiber orientation angles.  The first material system, supplied by Fiberite, Inc.,
consists of carbon IM-7 fibers in a 977-2 toughened epoxy matrix.  Unidirectional
laminates with fiber orientations of [0°], [10°], [45°], and [90°] were tested.  Tensile tests
were conducted by Cincinnati Testing Labs of Cincinnati, Ohio at a strain rate of
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1E-04 /sec on each of the composites [27].  As discussed in [1,2], only low strain rate
data were obtained at this time.

     The IM7/977-2 composite has a fiber volume ratio of 0.60.  The material properties of
the IM-7 fibers, as determined from Reference [28], are stated in Table 1.  The elastic
properties of the Fiberite 977-2 toughened epoxy, as determined in Reference [1], are
stated in Table 2.  The inelastic properties for the Fiberite 977-2 matrix for low strain rate
tensile loading, required for the modified Ramaswamy-Stouffer constitutive equations,
are stated in Table 2.  All the constants were determined in [1], with the exception of β,
which is new.  The value for “q” was varied somewhat from that utilized in [1] in order to
provide a slightly better fit to the composite data.  Since approximations were required to
determine the inelastic material constants for this material originally [1], making slight
adjustments to the constants was considered to be acceptable.

     The second material that was studied consists of carbon AS4 fibers in a PEEK
thermoplastic matrix. Tensile stress-strain curves were obtained by Weeks and Sun [29]
for unidirectional composites with fiber orientations of [14°], [30°], [45°] and [90°] at a
strain rate of 1E-05 /sec, and composites with fiber orientations of [15°], [30°], [45°] and
[90°] at a strain rate of 0.1 /sec.

     The fiber volume ratio used for the AS4/PEEK material was 0.62 (a typical value for
this material based on representative manufacturer information).  The elastic properties of
the AS-4 fibers, as listed in Reference [30], are shown in Table 1.  For the PEEK matrix,
the elastic properties are shown in Table 2 [1].  The inelastic material constants for the
modified Ramaswamy-Stouffer constitutive equations were determined in [1] (except
again for β, which is new) and are shown in Table 2.

Longitudinal
Modulus (GPa)

Transverse
Modulus (GPa)

Poisson’s Ratio In-Plane Shear
Modulus (GPa)

IM-7 276 13.8 0.25 20.0
PEEK 214 14.0 0.20 14.0

Table 1: Elastic Properties for Fibers Used in Composite Laminates

E
(GPa)

ν Do

(1/sec)
N Zo

(MPa)
q Ωm

(MPa)
β

977-2 3.65 0.40 1E+04 0.50 1030 100 69 1.2
PEEK 4.00 0.40 1E+04 0.46 630 310 52 0.45

Table 2: Material Properties for Polymer Matrices Used in Composite Laminates

     In Table 2, “E” represents the elastic modulus, “ν” is the Poisson’s ratio, and the
inelastic material constants are as described earlier.  There is currently no good
explanation for the physical meaning of the parameter β.  As a result, the significance of
the value of the parameter and its variation for the two materials examined in this study
can not be quantified at this time.
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Verification Analysis Results

     Analyses were conducted using the revised polymer constitutive model implemented
within the composite micromechanics model developed in [2].  The revised methodology
for calculating the effective inelastic strain detailed earlier in the report was utilized for
these analyses.  The predicted results were compared to experimentally obtained values.
Stress-strain curves for the IM7/977-2 laminates are shown in Figures 4-7.  Stress-strain
curves for the AS4/PEEK composite are shown in Figures 8-11 for a strain rate of 1E-05
/sec, and in Figures 12-15 for a strain rate of 0.1 /sec.  The plots of the [10°] IM7/977-2
laminate shown in Figure 5, and the [14°] and [15°] AS4/PEEK laminates shown in
Figures 8 and 12 are correlations, while the remaining plots are “true” predictions.

     As can be seen in the figures, for both materials, and for both strain rates for the
AS4/PEEK system, the analytical results match the experimental values quite well for all
fiber orientation angles examined.  The only major discrepancy between the experimental
and computed results is that for the shear dominated fiber orientation angles ([10°], [14°],
and [15°]), the inelastic portion of the predicted stress-strain curves are flatter than the
experimental results.  However, the predicted stresses at the end of the stress-strain
curves match the experimental values reasonably well.  For predicting ply strength, which
will be discussed in the next section of this report, correctly predicting the stress levels at
the end of the stress-strain curve is most critical.  The overall comparison between the
experimental and predicted values is still quite good.

     The effects of modifying the polymer constitutive equation can be seen quite clearly in
Figure 16, where the predicted stress-strain curves for the IM7/977-2 laminate with a
[10°] degree fiber orientation angle from Figures 3 and 5 are superimposed.  As can be
seen from Figure 16, modifying the polymer constitutive model produced a significant
improvement in predicting the deformation response for this shear dominated fiber
orientation angle.  The original constitutive model predicted results that were much softer
than the experimental values, while the revised equations produced composite predictions
that compare much more favorably to the experimental results.

PLY STRENGTH MODEL

Overview

     In order to develop structural level penetration and failure models that can be applied to
high strain rate impact applications, ply level failure needs to be accurately predicted.  As
discussed in the background section of this report, previous researchers have developed a
variety of ply level failure models.  For this work, ply level failure due to local failure
mechanisms is predicted based on macroscopic stresses and strengths.  In particular, the
Hashin failure model [3] is utilized in this work.  As discussed earlier, some researchers
such as Pecknold and Rahman [23] have utilized constituent level stresses to predict ply
failure based on local failure mechanisms.  However, for the model presented in this work,
there was a higher level of confidence in the effective stresses predicted on the macroscopic
level than in the constituent level stresses predicted for each of the subcells.  Furthermore,
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appropriate strength data were more readily available for the composites analyzed for this
study than for the individual constituents.  However, particularly in considering the
ultimate future application of the ply strength models, the ability to account for and predict
local failure mechanisms at least approximately was desired.

     Since only ply level failure based on simple tensile tests is being considered at this
time, property degradation models are not being utilized.  For structural level modeling,
the ability to only degrade certain material properties based on the local ply failure
mechanisms might be desirable to provide improved simulation of stress transfer
mechanisms.  Furthermore, in implementing the model into a finite element code, a
gradual degradation of the material properties might improve the stability of the finite
element analysis.  Since the failure model utilized in this study does predict failure based
on approximations of local failure mechanisms, the eventual incorporation of property
degradation models will be possible.

Hashin Failure Criterion

     For this work, the Hashin failure criterion was chosen [3].  This criterion predicts ply
level failure based on local failure mechanisms using macroscopic stresses and strengths.
The criterion is based on stresses and strengths in the local material axis system, so
appropriate transformations [25] must be carried out to convert stresses from the
structural axis system to the material axis system.  Since the composites analyzed in this
study were only subject to in plane loading and the out-of-plane stresses were found to be
relatively small, the plane stress approximation to the Hashin model was utilized.
However, for applications where the out-of-plane stresses are significant, there are full
three-dimensional versions of the criterion available [3].

     The Hashin criterion is based on quadratic combinations of stresses and strengths.  A
quadratic model was chosen in order to provide the best approximation to the failure
surface while still allowing for a relatively simple model [3].  Ply failure based on fiber
tensile failure, fiber compressive failure, matrix tensile failure and matrix compressive
failure is predicted separately.  In each of the separate criteria, failure is considered to
have occurred if the value of the expression is greater than one (1).  For the purposes of
this study, once failure in any of the failure modes is detected, total composite failure is
considered to have occurred.  In actuality, particularly for matrix dominated failure
modes, the composite can withstand load after the “failure” load has occurred.  However,
for the laminate configurations examined here, final composite failure was assumed to
occur shortly after initial matrix cracking takes place, therefore only the initial failure
load was predicted.

     Failure criteria for each of the failure modes are as follows.  In each of the
expressions, σij  is the stress component, XT is the ply tensile strength in the longitudinal
(fiber) direction, and XC is the compressive strength in the longitudinal direction.
Furthermore, YT is the tensile strength in the transverse direction, YC is the compressive
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strength in the transverse direction, and S is the ply shear strength. Failure is considered
to occur when the value of the expression becomes greater than or equal to one (1).
Tensile fiber failure is predicted by using the following expression:

1
2

12

2

11 =




+





SXT

σσ
(38)

Compressive fiber failure is predicted using the following equation.  Shear stresses were
not included in the failure criterion since Hashin was unsure whether shear stresses
increased or decreased the compressive strength.  Therefore, the effects of shear stresses
were neglected [3].

111 =
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σ
(39)

Tensile matrix failure is predicted using the following expression:
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Compressive matrix failure is predicted by the following:
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Verification Analyses: IM7/977-2 Laminates

     To verify the ply strength model, the IM7/977-2 material was once again analyzed.
For the IM7/977-2 system, the longitudinal tensile strength is 2300 MPa [27], the
longitudinal compressive strength is 900 MPa [31], the transverse tensile strength is 73
MPa [27] and the shear strength is 85 MPa [27].  Due to a lack of data, the transverse
compressive strength was set to twice the transverse tensile strength.  To compute the in-
plane shear strength, the failure stress of a [±45°]s laminate was divided by two (2),
which is a standard procedure for determining shear strength [32].  The predicted and
experimental [27] failure strength values for [10°] and [45°] laminates for the IM7/977-2
material system are shown in Table 3.  For both laminates considered, failure was
predicted to be due to tensile matrix failure.  The “failure stress” stated in Table 3 and all
remaining tables is the longitudinal stress (stress along the loading direction) at which
failure was predicted to occur.  However, the values of all of the stress components at
each time step were used in applying the Hashin failure criteria.
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Predicted Failure Stress
(MPa)

Experimental Failure Stress
(MPa)

[10°] Laminate 480 500
[45°] Laminate 100 105

Table 3: Failure Stress Predictions for IM7/977-2 Laminate

     As can be seen in Table 3, for a shear dominated fiber orientation ([10°] laminate),
and a fiber orientation with significant normal and shear stresses ([45°] laminate), the
predicted failure stresses compare reasonably well to the experimental values.  These
results indicate that the presented failure criteria produce accurate results for a variety of
fiber orientations.

Verification Analyses: AS4/PEEK Laminates

     The AS4/PEEK material system considered earlier was once again analyzed. For this
material, only quasi-static strength data were available.  Furthermore, ply shear strength
data that provided an acceptable correlation with the available experimental results were
not available.  In addition, transverse stresses predicted using the deformation model for
off-axis composite layers (such as [30°] and [45°] laminates) were greater than the
transverse strengths indicated by the Weeks and Sun data shown in Figures 10 and 14
[29].  Therefore, these values were not used for the transverse strengths.  Figures 10 and
14 indicate that the transverse modulus does not appear to vary with strain rate for this
material, indicating that the transverse strengths may also be rate independent.  For a
carbon fiber reinforced polymer matrix composite, longitudinal strengths have been
found to be rate independent [33].  Therefore, for this study, the longitudinal and
transverse strengths for the AS4/PEEK system were assumed to be rate independent, and
the shear strength was assumed to be rate dependent.

     For the AS4/PEEK material, a longitudinal tensile strength of 2070 MPa was used
[34], and the transverse tensile strength was set to 83 MPa [34].  The longitudinal
compressive strength was set equal to one-half of the longitudinal tensile strength, and
the transverse compressive strength was set equal to twice the transverse tensile strength
for this study. The shear strength values were determined by using the data from the [15°]
laminates.  From this data, the shear strength for a strain rate of 1E-05 /sec was
determined to be 63 MPa, and the shear strength for a strain rate of 0.1 /sec was
determined to be 88 MPa.  Using these values, failure stresses were predicted for the
[30°] and [45°] laminates for both strain rates.  The predicted and experimental results for
a strain rate of 1E-05 /sec are shown in Table 4, and the results for a strain rate of 0.1 /sec
are shown in Table 5.  In all cases, failure was predicted to be due to tensile matrix
failure.
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Predicted Failure Stress
(MPa)

Experimental Failure Stress
(MPa)

[30°] Laminate 130 140
[45°] Laminate 98 104

Table 4: Failure Stress Predictions for AS4/PEEK: Strain Rate=1E-05 /sec

Predicted Failure Stress
(MPa)

Experimental Failure Stress
(MPa)

[30°] Laminate 165 170
[45°] Laminate 114 112

Table 5: Failure Stress Predictions for AS4/PEEK: Strain Rate=0.1 /sec

     For both strain rates and both fiber orientations considered, the comparison between
the predicted and experimental values is quite good.  The results indicate that the failure
criteria are able to predict ply failure for a variety of fiber orientations and strain rates.
The results for this material also indicate that even when some approximations are
required in determining the ply failure stresses, reasonable results can still be obtained.

CONCLUSIONS

     In this paper, several modifications to a previously developed analytical methodology
for predicting the nonlinear rate-dependent response of polymer matrix composites have
been described. The constitutive equations utilized to model the inelastic, nonlinear
deformation response of the polymer were modified to improve the shear response of the
polymer.  This improvement resulted by having the shear portion of the effective stress
be dependent on the hydrostatic stress state.  The composite micromechanics
methodology was modified to allow for an improved calculation of the effective inelastic
strain.  Properly calculating the effective inelastic strain is important for the application
of total Poisson strains in a strain controlled loading algorithm.  Even though Poisson
strains were neglected in computing the effective inelastic strains, the total Poisson
strains were apparently computed accurately.  Finally, the Hashin failure criterion was
incorporated into the material model to allow for the calculation of ply ultimate strengths
based on approximating local failure mechanisms.

       For all of the modifications described in this report, verification studies were carried
out using two representative carbon fiber reinforced polymer matrix composites.  For
both material systems studied, the deformation response and ply ultimate strengths
predicted by the analytical model compared well to experimentally obtained results for a
variety of ply orientations and strain rates.  The results indicate that the analytical model
is successful in predicting the rate-dependent, nonlinear response of polymer matrix
composites.
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     Future work will involve developing a laminate theory to allow for the analysis of
simple angle ply, symmetric laminates.  The combined deformation and failure model
will then be implemented into a transient dynamic finite element code.  Full deformation
and failure analyses will then be conducted for a high strain rate impact problem such as
simulating a split Hopkinson bar experiment on a composite specimen.  Ultimately, the
developed methodology will be used to simulate the response of composite structures
subject to a high strain rate impact.
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Figure 1: Geometry and Layout of Mechanics of Materials Unit Cell Model.

Figure 2:  Model Predictions for IM7/977-2 [10°] Laminate Using Original Inelastic Strain
Formulation for Mechanics of Materials Approach
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Figure 3: Model Predictions for [10°] IM7/977-2 Laminate with Revised Inelastic Strain Calculations

Figure 4: Model Predictions for [0°] IM7/977-2 Laminate with Revised Polymer Model

IM7/977-2 [0] Composite-Strain Rate=1E-04 /sec

0

500

1000

1500

2000

2500

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Strain

Experiment

Mech.Mat.

IM7/977-2 [10] Composite-Strain Rate=1E-04 /sec

0

100

200

300

400

500

600

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Strain

Experiment

Mech.Mat.



NASA/TM—1999-209060 25

Figure 5: Model Predictions for [10°] IM7/977-2 Laminate with Revised Polymer Model

Figure 6: Model Predictions for [45°] IM7/977-2 Laminate with Revised Polymer Model
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Figure 7: Model Predictions for [90°] IM7/977-2 Laminate with Revised Polymer Model

Figure 8: Model Predictions for [14°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=1E-05 /sec
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Figure 9: Model Predictions for [30°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=1E-05 /sec

Figure 10: Model Predictions for [45°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=1E-05 /sec
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Figure 11: Model Predictions for [90°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=1E-05/sec

Figure 12: Model Predictions for AS4/PEEK [15°] Laminate with Revised Polymer Model-
Strain Rate=0.1 /sec
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Figure 13: Model Predictions for [30°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=0.1 /sec

Figure 14: Model Predictions for [45°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=0.1 /sec
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Figure 15: Model Predictions for [90°] AS4/PEEK Laminate with Revised Polymer Model-
Strain Rate=0.1 /sec

Figure 16: Comparison of Results for [10°] IM7/977-2 Laminate Using both Original and Revised
Polymer Constitutive Equations
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